Inverse solution of ear-canal area function from reflectance
نویسندگان
چکیده
منابع مشابه
Inverse solution of ear-canal area function from reflectance.
A number of acoustical applications require the transformation of acoustical quantities, such as impedance and pressure that are measured at the entrance of the ear canal, to quantities at the eardrum. This transformation often requires knowledge of the shape of the ear canal. Previous attempts to measure ear-canal area functions were either invasive, non-reproducible, or could only measure the...
متن کاملAcoustic Immittance, Absorbance, and Reflectance in the Human Ear Canal.
Ear canal measurements of acoustic immittance (a term that groups impedance and its inverse, admittance) and the related quantities of acoustic reflectance and power absorbance have been used to assess auditory function and aid in the differential diagnosis of conductive hearing loss for over 50 years. The change in such quantities after stimulation of the acoustic reflex also has been used in ...
متن کاملReflectance of acoustic horns and solution of the inverse problem.
A method is described for solving the inverse problem of determining the profile of an acoustic horn when time-domain reflectance (TDR) is known only at the entrance. The method involves recasting Webster's horn equation in terms of forward and backward propagating wave variables. An essential feature of this method is a requirement that the backward propagating wave be continuous at the wave-f...
متن کاملMeasurement of acoustic impedance and reflectance in the human ear canal.
The pressure reflectance R (omega) is the transfer function which may be defined for a linear one-port network by the ratio of the reflected complex pressure divided by the incident complex pressure. The reflectance is a function that is closely related to the impedance of the 1-port. The energy reflectance R (omega) is defined as magnitude of [R]2. It represents the ratio of reflected to incid...
متن کاملCharacterizing the ear canal acoustic impedance and reflectance by pole-zero fitting.
This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Acoustical Society of America
سال: 2011
ISSN: 0001-4966
DOI: 10.1121/1.3654019